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By combining Michel's geometric theory of symmetry breaking and classical 
results from variational analysis, we obtain a lower bound on the number of 
critical points with given symmetry H C_ G of a potential symmetric under G. 
The result is obtained by applying the Ljustemik-Schnirelman category in the 
group orbit space, and can be extended along the same lines to more general 
situations. 

1. ~ T R O D U C T I O N  

It is well known that Michel's theorem (1971 a) [see also Michel (197 l b) 
and Abud and Sartori (1983) for more detailed discussion, and Michel (1980), 
Michel and Radicati (197 l a,b, 1973), Cabibbo and Malani (1971), and Sartori 
(1992) for'applications in theoretical physics] permits one to obtain genetic 
minimal symmetry-breaking solutions to symmetric variational problems on 
the basis of a study of the geometry of group action, and in particular of the 
isotropy stratification (Michel, 1971a,b; Abud and Sartori, 1983) of the 
orbit space. 

Here, by "minimal symmetry breaking" we mean a breaking of the 
symmetry from G to Go with Go a maximal isotropy subgroup of G; in the 
Michel theory language this would be more precisely expressed by saying 
that Go corresponds to the symmetry type of a maximally singular stratum. By 
"generic" solution, we mean a solution which depends only on the symmetry 
properties of theproblem, but not on the particular form of the potential. 

t Department of Mathematical Sciences, Loughborough University of Technology, Loughbor- 
ough LEI 1 3TU, England. E-mail: G.Gaeta@lut.ac.uk. 

2Centre de Physique Th6orique, Ecole Polytechnique, 91440 Palaiseau, France. E-mail: 
gaeta@ orphee.polytechnique.fr. 

217 
0020-7748/96/0100-0217509,50/0 �9 1996 Plenum Publishing Coqaoration 



218 Gaeta 

Thus, Michel's theory provides model-independent solutions to varia- 
tional problems. 3 The best-known application of Michel's theorem, and the 
one which motivated Michel's work, is maybe the one by Michel and Radicati 
(1971a,b, 1973; Michel, 1980) to the spontaneous symmetry breaking in the 
SU(3) theory of elementary particles, giving raise to the octet. 4 

The purpose of the present paper is to remark that, by the same approach, 
one can also count the model-independent number of (not necessarily mini- 
mal) symmetry-breaking solutions. For a variational problem, critical points 
come in group orbits, so that we will actually count critical orbits with a 
given symmetry type, as explained below. 

We will state our result in the case of a finite-dimensional smooth 
manifold M on which is defined the smooth action of a compact Lie group 
G (one says then that M is a smooth G-manifold). However, our results would 
extend to a much more general situation (e.g., Banach manifolds), provided 
some technical conditions are met; this extension would essentially parallel 
the extension of Michel's theorem to the "symmetric criticality principle" of 
Palais (1979, 1984), 5 and will not be discussed here. 

It is remarkable that our result can be stated, in mathematical language, 
in terms of the Ljusternik-Schnirelman (LS) category (see, e.g., Ambrosetti, 
1992), which, to conform to physicists' language, we will call the LS index. 
Actually, progress in this direction has been made in the mathematical litera- 
ture, but there the focus is on the equivariant LS index in the manifold M 
rather than, as here, the ordinary LS index in the orbit space l-I = M/G 
(see, e.g., Benci, 1981; Benci and Pacella, 1985; Bartsch, 1993; Matzeu and 
Vignoli, 1994). 

In the following, we will first briefly recall Michel's construction of 
isotropy stratification, and the key lemma used by Michel in order to prove 
his theorem (Michel, 1971 a). Our present result will then follow from Michel's 
discussion, essentially by just applying it (and the LS category) to the problem 
at hand here. 

The Michel construction is discussed in more detail in Michel (1971a), 
Abud and Sartori (1983), Sartori (1992), and Gaeta (1990, 1992a, 1993), to 
which we refer for further precision. This same, or some strongly related, 
construction, and to some extent the same lemma, was then used to obtain 
further results in the field of nonlinear dynamics, such as the equivariant 
branching lemma and the reduction lemma, some of which have become 

3 Actually, Michel's theory is able to deal with more general classes of problems with symmetry; 
however, here we are mainly interested in the variational case. 

4See also the contemporaneous results of Cabibbo and Maiani (1971). 
5It is interesting to notice that Cabibbo and Maiani (1971) had used an argument essentially 
amounting to the symmetric criticality principle, although they did not go to the generality 
of the Michel theorem. The strange story of the argument will be discussed elsewhere. 
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fundamental tools in understanding bifurcation theory and symmetry breaking 
(see, e.g., Gaeta, 1990, 1992b; Cicogna, 1981, 1990; Vanderbauwhede, 1982; 
Golubitsky and Stewart, 1985; Stewart, 1988; Golubitsky et al., 1988). One 
should also mention the deep results of Field and Richardson (1989, 1990, 
1992a,b), who extended Michel's theory and clarified the role of the Weyl 
group in this context. 

We make no use of the Morse theory (Matzeu and Vignoli, 1994; Morse 
and Cairns, 1969; Milnor, 1969), so that we cannot reproduce results that 
intrinsically need it (but one could apply the Morse theory to the present 
construction, i.e., in ~). Also, we do not discuss here periodic solutions, 
which have been recently studied by paralleling Michel's approach (Koenig 
and Chossat, 1994; Chossat et al., 1995; see also Melbourne, 1994) or can 
be studied by the SLequivadant index (Benci, 1981; Benci and Pacella, 1985; 
Bartsch, 1993; Matzeu and Vignoli, 1994). 

2. ISOTROPY STRATIFICATION AND ORBIT SPACE 

Let M be a finite-dimensional smooth manifold and G a compact Lie 
group; let a smooth action (not necessarily linear) of G on M be def'med, 
i.e., let M be a G-manifold. To any point x E M is then associated a subgroup 
Gx C_ G, its isotropy subgroup: 

Gx := {g ~ G: gx = x} (1) 

In many cases, and anyway in the present context, subgroups conjugate in G 
should be seen as physically equivalent, 6 so that we will consider equivalence 
classes of subgroups under conjugation in G, called symmetry types: 

'[H] := {K C__ G: K = gHg - l ,  g E G} (2) 

If there exist Gt E [H], G2 E [g] such that Gt C G2, we say that the 
symmetry type [K] is higher than the symmetry type [HI, or [H] < [K]. 

We can then consider an equivalence relation in M as follows: the 
equivalence class of x, called the stratum 7 of x, denoted by or[x], is defined as 

o-[x] := {y ~ M: Gy E [Gx]} -- {y E M: Gy = gG~g - l ,  g ~ G} (3) 

The set tr[x] is a smooth submanifold of M (Michel, 197 lb; Abud and Sartori, 
1983; Bredon, 1972; Palais and Terng, 1988). 

Let us also consider another equivalence relation on M given by the G- 
action: the equivalence classes are the G-orbits, denoted by to[x], 

to[x] := {Gx} -- {y  ~ M: y = gx, g ~ G} (4) 

6E.g., for G = SO(3), the subgroups Hi = SO(2) of rotation around the axis I. 
7This is the latin word for layer (plural: strata). 
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It is quite obvious, but important, that 

to[x] _c o-Ix] (5) 

(this simply follows from the fact that y = gx implies Gy = gGxg-l). 
One can also consider the orbit space 

f l  := M/G (6) 

[which with the present assumptions on M and G is a semialgebraic manifold 
(Abud and Sartori, 1983; Sartori, 1992; Bredon, 1972; Palais and Terng, 
1988; Hilbert, 1897], and define a stratification on this: that this is possible 
is indeed granted by (5). We will denote isotropy strata in 12 by E,  and have 

~[to] := {v e 1"~: 3x ~ to, 3y e v: y ~ ~r[x]} (7) 

Again, E[to] is a smooth submanifold of ~ .  
An important point is that the group-subgroup relation is reflected into 

a bordering relation for strata. This means that if G~, Gy are isotropy subgroups 
of G and to, v e ~ with x ~ ~ y ~ v, then ~[to] C a(~[v]). Conversely, 
O(E[v]) belongs to the union of strata E[toi] with symmetry types [K] --> [Gy]. 

3. EQUIVARIANT FLOWS AND INVARIANCE OF STRATA 

The relevance of the above construction and definitions in this context 
is due to the following result. Consider a vector field f :  M ~ TM on M, or 
equivalently the dynamical system on M defined by f, 

Yr = f(x) (8) 

and suppose that f is G-equivariant, i.e., 

f (gx)  = (dg-f)(x) (9) 

where dg denotes the action of g on the tangent space (recall that the action 
of G is not necessarily linear). Then (Michel, 1971a) necessarily 

f :  x ---) Txtr[x] (10) 

In the case of a variational G-invariant problem defined by a smooth potential 
F: M ~ R, i.e., a potential which satisfies 

F(gx) = F(x) Vg ~ G, Vx E M (11) 

the gradient f := VF of F satisfies (9), and therefore (10). This means that, 
given a stratum cr C M, we can consider the restriction F,, of F to or: critical 
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points of  F,, are then granted to be critical points s of F as well (Michel, 
1971a; PalMs, 1979, 1984). 

Notice that (11) also grants the critical points of  F come in G-orbits, 
and that we can think of F as being defined on 12 rather than on M; we use 
then the notation ~(co), with ~ :  1~ ---) R and 

cb(co) = F(x) ,  x e co (12) 

Consider now the vector field ~b induced by f on 12; if f = VF, then ~b = 
V~,~, where V,o is the gradient with respect to to. 9 As critical points of F 
come in G-orbits, we can equivalently study critical points of ~.  

Applying (10) t o f  = VF, we have that 

(Vo,~)(co) e T,o~[co] (13) 

Therefore, we can consider the restriction ~ x  of  �9 to any stratum X C_ 12; 
critical points of ~ x  will also be critical points of  ~, corresponding to critical 
points of F with symmetry type 

[H] = [Gx], x e co, to e X  (14) 

It should be stressed that, in general, the strata cr or X are no t  closed manifolds; 
thus, although (10) ensures that the solution x( t )  of (8) with initial datum 
x(0) = Xo lies in cro = cr[xo], even if x( t )  admits a limit x ,  for t ---> oo, this 
could very well not lie in cro, but only in O'o, i.e. it could be x .  e act0, x .  

cro. 
Similar considerations also hold for the flow d:, and in particular the 

gradient flow d# = Vo,~, in 12 considered in (13) and in the following. 
Finally, it should be mentioned that (10) could be made more precise 

(Golubitsky and Stewart, 1985; Stewart, 1988; Golubitsky et  al. ,  1988); 
indeed, if M n  is the subset of  M left fixed by H C G, i.e., 

M n  :=  {x e M: H C_ Gx} (15) 

and writing Mx for M6x, we have that i f f  satisfies (9), then I~ 

f :  x e TxMx C_ Txo[x] (16) 

Notice, however, that in this way we lose track of  the physically desirable 
identification of  conjugate subgroups. 

sit should be stressed that this does not extend to stability matters: e.g., a minimum of F o 
will not necessarily be a minimum of F: it could also be a saddle point. 

9This could be precisely defined, e.g., by using a Hilbert minimal integrity basis (Michel, 197 lb; 
Abud and Sartori, 1983; Sartori, 1992; Bredon, 1972; Palais and Terng, 1988; Hilbert, 1897). 

t~ fact is related to the slice theorem; see, e.g., Abud and Sartori (1983), Bredon (1972), 
and PalMs and Terng (1988). 



222 Gaeta 

4. COUNTING CRITICAL ORBITS, AND S Y M M E T R Y -  
B R E A K I N G  SOLUTIONS 

Let us now introduce the following notation: we denote by ~ u  the 
stratum in l'l whose orbits have symmetry type [HI, 

]~t4 := ]~[to], co: Vx E to, H ~ [Gx] (17) 

and we denote ~ n  simply by qbn for ease of notation. 
The above discussion, which followed Michel's construction (Michel, 

1971a,b; Abud and Sartori, 1983; Sartori, 1992; Gaeta, 1990, 1992a, 1993), 
shows in particular the following result. 

Lemma 1. The number n[H] of critical G-orbits o f F  in M with symmetry 
type [H] is equal to the number of critical points of ~n- 

Indeed, we have seen that critical G-orbits of F are critical points of ~;  
also, by definition, critical orbits of F with symmetry type [H] are critical 
points of �9 which lie in E n. But, as we have seen, these are also critical points 
of @n: hence the lemma is just a reformulation of the previous discussion. 

Due to the considerations appearing after equation (14), we are also 
interested in considering the set A n corresponding to the union of the E K 
with symmetry type [H] or higher, 

A n : =  [ j  ]~K (18) 
[xJ<_[~ 

Notice that we can easily define the restriction of �9 to A u, being given in 
terms of the ~n  with [H] --< [K]; this will be called ~ n .  

From these definitions we have immediately, as a corollary of Lemma 
1 and with the same proof, the following result. 

Lemma 2. The number of k[H] of critical G-orbits of F in M with 
symmetry type [H] or higher is equal to the number of critical points of ~n .  

We want to consider the situation in which either M is closed or there 
is a closed submanifold M0 C M which is invariant under both the G-action 
and the gradient flow f = VF, i.e., such that G(Mo) = Mo and on OMo the 
gradient of F in the outward normal direction has definite sign. For ease of 
notation, we just consider the case M is closed (the other case being exactly 
the same provided we restrict our considerations to M0), and that if OM exists, 
f = - V F  points inward on OM; we say then that M is contracting under F. 

In this case, we are guaranteed that there is at least a critical point of 
F in the interior of M0, and topological considerations can also guarantee 
there is a higher number of critical points on M. 

It should be stressed that now the difference between Lemmas 1 and 2 
is that the first applies to a potential ~ n  which could well not have critical 
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points in its domain of definition X u, while in the second case we are 
guaranteed xI*n has critical points in its domain of definition A n. 

The critical points xi of F will have a symmetry type [Gx~], and we are 
interested precisely in this, i.e., we are interested in the symmetry breakings 
corresponding to critical points of the symmetric potential F. 

Michel's theorem (Michel, 1971a) allows us to conclude that if an 
orbit to o is isolated in its stratum, then too is a critical point of any ~, and 
correspondingly it is a critical orbit of any G-invariant potential F. Here we 
do not aim at such a precise identification of critical orbits, but rather at 
identifying only the symmetry types of critical orbits, and the number n[H] 
of critical orbits with symmetry type [HI; we are also interested in the number 
v[H] of critical orbits with symmetry type [H] or higher, v[H] = Xt~<tK 1 n[H]. 

We would like in particular to know what is the minimal possible value 
of n[H], i.e., the number of critical G-orbits for F with given symmetry type 
[H] which is possible independent 11 of the actual F, just on the basis of the 
symmetry under G; we denote this minimal value of n[H] by m[H]. Similarly, 
we would also like to know the minimal possible value of v[H], which we 
call ~[H]. 

Let us first decompose A n into disjoint connected components Aa n C 
f'~, where a = 1 . . . . .  c(H); we can then consider separately the An. 

We recall that the LS category (or LS index) (Ambrosetti, 1992; Matzeu 
and Vignoli, 1994) of a connected set A C_ X, denoted by ~ ( A ,  X), is defined 
as the minimal number k such that there exists a covering of A by closed 
sets Ai, 

A = Al t_J "-- tO Ak (19) 

with all the Ai's contractible in X. 
A classical result in variational analysis (Ambrosetti, 1992), and more 

specifically in LS theory, is that a scalar function p: A ---> R has at least 
~s X) critical points in A. 

Thus, applying this to A n and ~n ,  we have that if Aa n is contractible, 
we have at least a critical point of ~ n  in it, and if An is noncontractible, we 
have at least as many critical points of ~ n  as we need contractible open sets 
to cover An. Therefore, the above result from LS theory permits us to conclude 
immediately that: 

Lemma 3..The number I~[H] defined above is given by 
c(n) 

I~[/-/] = ~ ~Se(A~ u, O) (20) 
a = l  

l i In this context, the original formulation of Michel's theorem (Michel, 197 la) guarantees that 
if E n  is the union of h isolated points (tot . . . . .  toh), as each of these is critical, then h[H] 
= h. The result we obtain below is a direct generalization of this. 
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We can therefore consider the lattice of  isotropy subgroups of  G and 
use the above result to study symmetry breakings under F. For the sake of  
definiteness, we will consider the minima of F, and assume that if  M has a 
border, then f --- VF points outward from M on OM, i.e., M is contracting 
under F. 

Let us first consider G itself, and correspondingly A ~ = E ~ C 1~ if it 
exists. In this case, we are sure there is at least a critical point to E A ~ 
(indeed E a is a maximally singular stratum, if  it exists), and actually we 
know that there are at least p.[G] = ~S~ n, 1~) critical points of �9 with 
symmetry type [G] (i.e., invariant under G, as H ~ [G] r H = G since G 
is the full group). 

Assume now that the critical points in A a are known to be maxima, 
i.e., that the symmetry G is broken. Let us consider a maximal isotropy 
subgroup H of G. We can now consider A n and claim that ~[H] = ~S"(A n, 
f~), but the information that the symmetry G is broken allows us also to 
consider E n  = A n \ A  o being guaranteed that En is contracting under ~.  
Thus, we can also affirm that there are at least m[H] = ~S~ n, f l)  critical 
points of �9 with symmetry type H. 

It is clear that the procedure can be iterated along any chain of subgroups. 
In this way, we arrive at the following conclusion: 

Lemma 4. Let H = H0 C HI C H2 C - . .  C H,  _C G be a complete 
chain of  isotropy subgroups, i.e., all the Hi are isotropy subgroups of G for 
the G-action on M, and Hi is a maximal isotropy subgroup of Hi§ (H, is a 
maximal isotropy subgroup of G if  there is no x ~ M for which Gx = G). 
Assume that the symmetries HI . . . . .  H, are broken, i.e., that the critical 
points of �9 with symmetry types [Hal . . . . .  [H,] are known to be unstable. 
Then, there are at least 

re[H] = ~fT(E n, ~ )  (21) 

critical points of �9 with symmetry type [/-/]. 

Example. As a simple example, let us consider R E, on which we take 
coordinates (x, y); and G = Z2 X Z2 = Z(2 x) X Z(2 y), with Zt2 ~) generated by 
h: (x, y) --) ( - x ,  y) and Z(2 y) generated by k: (x, y) --) (x, - y ) .  As for the 
orbit space ~ ,  this can be identified with the first quadrant of  R 2, 

O = R++ = {(x, y): x >-- O, y >-- O} 

We have the following lattice of  isotropy subgroups: 

fz '/ 
[el C c G 
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It is immediate to check that there are four strata in M [we denote by ~ = 
(x, y) points of  R2]: 

Cro = { (0, 0) } Ge = G 

or1 = {(0, y)} (y :/: 0) Ge = Z(2 x) 

tr2 = {(x, 0)} (x ~ 0) G~ = Z(2 y) 

or3= {(x,y)} ( x y : ~ 0 )  G~--- {e} 

The strata 2i in f~ are immediately obtained from these by considering cri N 
R++. Notice that Z(2 x) and Z(2 y), although isomorphic, are not  conjugated in G, 
so that we have different strata corresponding to these. 

The G-invariant potentials V(x, y) are of the form V = V(x 2, y2), and 
the requirement that there is an invariant M C R 2 is satisfied if, e.g., limx.y...~ 
V = oo, i.e., if V is convex at infinity, which we assume to be the case; 
equivalently, we choose a rectangle M = Ix • ly such that VV points outward 
on OM. 

Clearly, any V = V(x 2, y2) has a critical point at the origin. It is also 
clear that on the x axis and on the y axis, the gradient VV is directed along 
the axis itself, so that if the origin is  a maximum, there has to be (at least) 
a minimum on the x axis for positive y and one for negative y, which are 
related by k; and similarly on the y axis we have (at least) a minimum for 
positive x and one for negative x, related by h. 

Indeed, applying Lemma 4, we get exactly this result: considering any 
compact M C R 2, the LS indexes of  2; are all equal to one; then, if the origin 
is an unstable critical point, we have one critical orbit (at least) in each of 
or1 and.or2; and if these are also unstable, we get one critical orbit (at. least) 
in the generic stratum cr4. 

5. D I S C U S S I O N  AND G E N E R A L I Z A T I O N S  

Notice that Lemma 4 has a "global" formulation, in the sense that we 
require all the critical points with higher symmetry [HI] . . . .  , [Hn] to be 
unstable. However, it is quite clear that we could equally well make "local" 
equivalent considerations, i.e., restrict our attention to a neighborhood Uo of  
a given critical point co0 of  symmetry type [Go] when co0 is unstable, or to a 
neighborhood UI C U0 of a given critical point oJ l E U0 if both COo and oJl 
are unstable, and so forth. (Here each Gj plays the role of  the Hn_j in the 
previous formulation). 

One could also consider the case that F - - a n d  therefore cI)--depends 
on a control parameter h in such a way that for varying h the stability of  
critical points is changed. We could use the approach sketched above to 
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follow a chain of symmetry breakings, or in mathematical language, a chain 
of bifurcations; such an extension would just repeat Lemma 4 in a "local" 
formulation, requiring, moreover, the existence of a suitable chain of h- 
dependent neighborhoods. 

In this way, one could count--in terms of the LS index--the generic 
number of bifurcating branches with a given symmetry type at the kth symme- 
try breaking in the chain. This would be a generalization of the "equivariant 
branching lemma" (EBL) of Cicogna (1981, 1990) and Vanderbauwhede 
(1982) in the frame of variational (stationary) bifurcation problems. 

It should be mentioned that the EBL was also generalized to study the 
case of Hopf bifurcation (of periodic solutions) and of quaternionic bifurcation 
(Golubitsky and Stewart, 1985; Stewart, 1988; Golubitsky etal., 1988; Milnor, 
1969; Koenig and Chossat, 1994). It is then natural to ask if the approach 
developed in the present paper could also be generalized to such a setting. 
I have no answer to such a question at this stage, although a natural way of 
attempting such an extension would combine the present approach, the S ~ 
index of Benci (1981; Benci and Pacella, 1985; Bartsch, 1993), and the 
"splitting principle" recently proposed in Gaeta (1994). 

The S 1 symmetry of the Benci index would be a dynamical one, i.e., 
correspond to motion along the periodic solutions rather than being a symme- 
try in the sense considered here. Clearly, the two notions can coincide, i.e., 
one can have a periodic orbit which lies in one G-orbit; in this case one has 
a relative equilibrium. It appears that combining the S I index and the splitting 
principle would be particularly efficient in considering bifurcation of ~2 rela- 
tive equilibria. 

In many cases, one is interested in variational problems in infinite- 
dimensional spaces, e.g., spaces of a section of a fiber bundle (as in gauge 
theories). Although the extension of the Michel theory to such a setting 
is very difficult--and a full extension probably impossible (Gaeta, 1992a, 
1993)--as the stratification is not properly defined in this case, the equivalent 
of (16) does still hold, and yields the Palais symmetric criticality principle; 
also, a partial extension of the Michel theory to this context (essentially, for 
maximal isotropy subgroups) is possible (Gaeta, 1992a, 1993). Thus, the 
approach proposed here can also be extended to infinite-dimensional varia- 
tional problems, essentially in the cases--and with the limitations-- 
considered by Palais (1979, 1984). 

As a final remark, already anticipated in the introduction, we notice that 
if we want to apply the Morse theory, by using the same construction we 
can apply it to ~, i.e., in 1), rather than to F, i.e., in M. Similarly, if we want 

12This should not be confused with the bifurcation from relative equilibria, for which see the 
paper by Krupa (1990). 
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specifically to look for periodic solutions (in a nongradient system) we could 
apply the S~-index (Benci, 1981; Benci and Pacella, 1985; Bartsch, 1993; 
Matzeu and Vignoli, 1994) to tb, i.e., in ~ ,  rather than to f, i.e., in M. 

In concluding, more than stressing the strict content of the previous 
lemmata, we would like to emphasize the main idea--and result--of the 
present approach: namely, that we can use the ordinary LS theory (as opposed 
to the equivariant one) to study symmetric variational problems and symme- 
try-breaking solutions, provided we work in f l  rather than in M, and we 
utilize Michel's theory. 
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